221 research outputs found

    Wireless Sensor Networks in Smart Structural Technologies

    Get PDF

    A Relatedness Analysis Tool for Comparing Drafted Regulations and Associated Public Comments

    Get PDF

    Wireless sensing and vibration control of civil structures

    Full text link
    Significant advances have been made in deploying wireless sensors and sensing network technologies for monitoring the health and safety of civil structures [4]. For monitoring applications, sensors are often used passively to measure structural responses. Equipped with an actuation interface, wireless sensors can be extended to command actuators [7]. This pape

    Generating Dispatching Rules for the Interrupting Swap-Allowed Blocking Job Shop Problem Using Graph Neural Network and Reinforcement Learning

    Full text link
    The interrupting swap-allowed blocking job shop problem (ISBJSSP) is a complex scheduling problem that is able to model many manufacturing planning and logistics applications realistically by addressing both the lack of storage capacity and unforeseen production interruptions. Subjected to random disruptions due to machine malfunction or maintenance, industry production settings often choose to adopt dispatching rules to enable adaptive, real-time re-scheduling, rather than traditional methods that require costly re-computation on the new configuration every time the problem condition changes dynamically. To generate dispatching rules for the ISBJSSP problem, we introduce a dynamic disjunctive graph formulation characterized by nodes and edges subjected to continuous deletions and additions. This formulation enables the training of an adaptive scheduler utilizing graph neural networks and reinforcement learning. Furthermore, a simulator is developed to simulate interruption, swapping, and blocking in the ISBJSSP setting. Employing a set of reported benchmark instances, we conduct a detailed experimental study on ISBJSSP instances with a range of machine shutdown probabilities to show that the scheduling policies generated can outperform or are at least as competitive as existing dispatching rules with predetermined priority. This study shows that the ISBJSSP, which requires real-time adaptive solutions, can be scheduled efficiently with the proposed method when production interruptions occur with random machine shutdowns.Comment: 14 pages, 10 figures. Supplementary Material not include

    Embedding damage detection algorithms in a wireless sensing unit for operational power efficiency

    Full text link
    A low-cost wireless sensing unit is designed and fabricated for deployment as the building block of wireless structural health monitoring systems. Finite operational lives of portable power supplies, such as batteries, necessitate optimization of the wireless sensing unit design to attain overall energy efficiency. This is in conflict with the need for wireless radios that have far-reaching communication ranges that require significant amounts of power. As a result, a penalty is incurred by transmitting raw time-history records using scarce system resources such as battery power and bandwidth. Alternatively, a computational core that can accommodate local processing of data is designed and implemented in the wireless sensing unit. The role of the computational core is to perform interrogation tasks of collected raw time-history data and to transmit via the wireless channel the analysis results rather than time-history records. To illustrate the ability of the computational core to execute such embedded engineering analyses, a two-tiered time-series damage detection algorithm is implemented as an example. Using a lumped-mass laboratory structure, local execution of the embedded damage detection method is shown to save energy by avoiding utilization of the wireless channel to transmit raw time-history data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49012/2/sms4_4_018.pd
    corecore